


About Dominion Energy

Mission: We are dedicated to delivering **safe**, **reliable**, **affordable**, **and sustainable energy** ...

- Headquartered in Richmond, VA
- We operate in 15 states and serve nearly 7 million customers
- Committed to achieving Net Zero emissions by 2050
 - Reduced carbon emissions by 46% (since 2005)
 - Reduced methane emissions by 38% (since 2010)
- 2nd largest solar fleet in the U.S.
- Industry leader in offshore wind
- Largest renewable natural gas program in the country

Why Clean Energy?

- Energy independence
- Lower emissions
- Lower fuel costs
- Legal/regulatory compliance
- Meets evolving customer expectations
- Stimulates economic activity
- Attracts clean-energy companies
- Increases new clean-energy jobs
- Increases state and local tax revenues → social services

National Leadership in Offshore Wind

Coastal Virginia Offshore Wind

- Located about 27 miles off the coast of Virginia Beach in a federal lease area
- Two-turbine pilot project began producing power in October 2020
- Commercial-scale project (176 turbines) scheduled for 2026 completion
- Enough energy to power 660,000 homes
- Will avoid up to 5 million metric tons of carbon dioxide emissions annually
- Offshore wind helps create a pathway to achieve Net Zero commitment by 2050
- Annual operations estimated to support
 1,100 jobs, \$210 million in economic output

Solar, Nuclear, and Energy Storage

Solar Energy

- Company owns one of the largest fleets in the U.S., ~2.2 gigawatts of capacity, and growing
- "Preferred" plan in SC integrated resource plan calls for more solar over the next 5 years
- Seeking approval for at least 16,100 megawatts of solar in Virginia by 2035

Nuclear

- V.C. Summer produces enough carbon-free electricity to power 225,000 homes
- Pursuing approval to extend the operation of nuclear units in Virginia
- Exploring other nuclear technologies like small modular reactors (SMRs)

Energy Storage

- Pumped hydroelectric storage: Fairfield facility in Jenkinsville; Bath County facility in Virginia (largest in the Western Hemisphere)
- Completed construction of 16 megawatts of battery storage pilot projects

Other Clean-Energy Initiatives

Renewable Natural Gas (RNG)

- Largest RNG investment and portfolio in the U.S.
- Partnerships with Smithfield Foods, Vanguard Renewables, Dairy Farmers of America
- Reduces emissions by capturing and converting methane into less carbon-intensive gas

Hydrogen

- Anchor sponsor of Low Carbon Resources
 Initiative—5-year initiative focused on economy-wide decarbonization
- Hydrogen-blending pilots in UT, OH, and NC
- Engaging with regional coalitions in support of establishing a national hydrogen hub

Step 1

Capturing Methane from the Farm

As hog manure breaks down, it produces methane gas. Instead of allowing methane to enter the atmosphere, it's captured in an anaerobic digester.

Step 2

Converting Methane to RNG

The methane captured from multiple farms is sent to a central conditioning facility, where it's refined to 99% pure methane, the same as traditional natural gas.

Step 3

Delivering to Homes & Businesses

The RNG is then put into an existing distribution system to serve homes, businesses, power plants and other natural gas consumers.

South Carolina Integrated Resource Plan

2022 Integrated Resource Plan Update

- Diverse mix of generation resources to ensure reliability, affordability, safety and sustainability
- Plans evaluate a range of technologies solar, battery, offshore wind, highefficiency gas generation and small modular nuclear reactors
- Plans include between 48%-61% of renewable generation in the forecast
- Studying retirement of coal units in South Carolina as early as possible while maintaining safety, reliability, affordability

Table 21:

Build Plan	2022- 2026	2027- 2031	2032- 2036	2037- 2041	2042- 2046	2047- 2051
RP8	10,727	13,043	12,617	14,185	16,377	20,549
Williams 2047 Reference	10,573	16,092	22,513	25,713	23,634	23,634
Williams 2030 Reference	10,573	16,248	24,990	25,745	23,634	23,634
High Fossil Fuel Prices	10,887	20,885	31,589	38,119	36,794	36,592
Zero Carbon Cost	10,573	15,308	22,833	22,609	20,483	20,483
Carbon Constrained	10,573	17,818	28,748	38,626	45,687	53,601

^{*}IRP updates are a snapshot based in time. They can be affected by numerous factors like load growth, fuel prices, environmental constraints and technology costs.